Effects of parameter variations on negative effective constitutive parameters of non-metallic metamaterials
نویسندگان
چکیده
Analytical expressions describing the variability of effective constitutive parameters of non-metallic metamaterials, as a function of the constituent geometric and material parameters and their variations, have been developed from the total differential of Clausius-Mossotti expressions (using Mie dipole polarizabilities) for the effective (bulk) constitutive parameters of the metamaterial. In practice, these expressions are important for estimating the performance of a metamaterial with particular variations in the parameters of its constituents that arise during the fabrication process, and can be used to guard against extinction of desired double negative (DNG) behavior. With the derived expressions, the effects of parameter variations on effective constitutive parameters of non-metallic metamaterials have been analyzed for three types of metamaterials: (i) cubic arrays of identical magnetodielectric spheres; (ii) cubic arrays of dielectric spheres with equal radius but two different permittivities; and (iii) cubic arrays of dielectric spheres with equal permittivity but two different radii. These effects are evaluated in terms of the calculated variations in values of the effective constitutive parameters of the metamaterial in the vicinity of the DNG or single negative (SNG) band for particular geometric and material parameters and their variations. Results show that variation in the following parameters impacts DNG bandwidth. Listed in order from greatest to least influence: (i) sphere radius; (ii) sphere permittivity and permeability; (iii) lattice constant of the array; and (iv) the constitutive parameters of the array medium, all impact the width of the achievable DNG band. For particular cases studied here, results also show that the DNG behavior may be extinguished if there are 0.78%, 0.016%, and 0.016% variations in all parameters of metamaterial types (i), (ii), and (iii), respectively, as defined above. For the design of non-metallic metamaterials with inclusions, having arbitrary material parameters, in either periodic or random arrangement, the presented results can give a qualitative guide on the level of fabrication tolerances that should be achieved in order to observe the predicted SNG or DNG behavior experimentally.
منابع مشابه
Chiral metamaterials: retrieval of the effective parameters with and without substrate.
After the prediction that strong enough optical activity may result in negative refraction and negative reflection, more and more artificial chiral metamaterials were designed and fabricated at difference frequency ranges from microwaves to optical waves. Therefore, a simple and robust method to retrieve the effective constitutive parameters for chiral metamaterials is urgently needed. Here, we...
متن کاملDesign of Dual-Band Double Negative Metamaterials
A dual-band artificial magnetic material and then a dual-band double-negative metamaterial structure based on symmetric spiral resonators are presented. An approximate analytical model is used for the initial design of the proposed structures. The electromagnetic parameters of the proposed metamaterial structure retrieved using an advanced parameter retrieval method based on the causality princ...
متن کاملQuantum optical effective-medium theory for loss-compensated metamaterials.
A central aim in metamaterial research is to engineer subwavelength unit cells that give rise to desired effective-medium properties and parameters, such as a negative refractive index. Ideally one can disregard the details of the unit cell and employ the effective description instead. A popular strategy to compensate for the inevitable losses in metallic components of metamaterials is to add o...
متن کاملBending Analysis of Multi-Layered Graphene Sheets Under Combined Non-Uniform Shear and Normal Tractions
Bending analysis of multilayer graphene sheets (MLGSs) subjected to non-uniform shear and normal tractions is presented. The constitutive relations are considered to be non-classical based on nonlocal theory of elasticity. Based on the differential transformation method, numerical illustrations are carried out for circular and annular geometries. The effects of nano scale parameter, radius of c...
متن کاملElectromagnetic field energy density in artificial microwave materials with negative parameters
General relations for the stored reactive field energy density in passive linear artificial microwave materials are established. These relations account for dispersion and absorption effects in these materials, and they are valid also in the regions where the real parts of the material parameters are negative. These relations always give physically sound positive values for the energy density i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017